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Abstract 
Frequently, during the process of solving a mathematical model numerically, we end 

up with a need to operate on a vector TJ by an operator which can be expressed as f(A) 
while A is N x N matrix (ex: exp(A), sin(A), A-’). Except for very simple matrices, it is 
impractical to construct the matrix f ( A )  explicitly. Usually an approximation to it is used. 
In the present research, we develop an algorithm which uses a polynomial approximation 
to f(A). It is reduced to a problem of approximating f(z) by a polynomial in z while 
z belongs to the domain D in the complex plane which includes all the eigenvalues of 
A. This problem of approximation is approached by interpolating the function f(z) in a 
certain set of points which is known to have some maximal properties. The approximation 
thus achieved is “almost best.” Implementing the algorithm to some practical problems is 
described. 

Since a solution to a linear system Ax = b is z = A-lb, an iterative solution to it can 
be regarded as a polynomial approximation to f (A)  = A-l. Implementing our algorithm 
in this case is described too. 
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I. Introduction. 

Let A be a N x N matrix whose elements belong to C, and f(z) is a function such 

that 

f(%) : c + c . 
The matrix f ( A )  can be defined in the following way: If 

00 

f(z) = ai (z  - ~ 0 ) ~  1 %  - 201 < r 
i = O  

00 
then 

f ( A )  = ai(A - zoI)* IAk - Z O I  < r (1.3) 
i=O 

where Ak is an eigenvalue of A. In (1.3), f(A) is expressed as an infinite polynomial. It can 

be shown [Gant 591 that f(A) as defined above can be written also as a finite polynomial 

of degree 5 N - 1 as follows: 

where 
x k  

Hkj(A) 

- an eigenvalue of A 

- polynomial in A of degree 5 N - 1 . jk - multiplicity of X k  (1.5) 

In many practical applications, we would like to compute a vector w which results 

from operating with the matrix f(A) on a vector v 

Using expression (1.4) for this purpose has two major disadvantages: 

(a) The exact knowledge of the eigenvalues is required. 

(b) f ( A )  is expressed as a polynomial of degree 5 N - 1 which can be large; thus it results 

in an highly time consuming operator. 

In this paper, we would like to present an algorithm which approximates the matrix f ( A )  

by a polynomial Pm ( A ) ,  where m << N .  Since (1.4), we have 
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Hence, our problem is reduced to a problem of approximating the function f(z) by a 

polynomial Pm(z) while z belongs to  a domain in C which includes all the eigenvalues of 

A. It is obvious from (1.7) that in the case where jk > 1, Pk-') has to  approximate 

f ( j k - 1 )  at the point xk. 

In Section 2, we describe briefly how to approach this problem of approximation. Using 

the results of this section we can construct a computational algorithm, once a suitable 

conformal mapping function is known. In very few cases, it is possible to get this function 

analytically. Usually we have to resort to a numerical method. A lot has been done in this 

area of conformal mapping and there are suitable routines. In our work, we have used a 

set of routines written by N. Trefethen based on his paper [Tref80], which are very efficient 

and reliable. The interested user can get the routines from the author upon request. The 

algorithm which results from making use of the approximating polynomial is presented in 

Section 3. In Section 4, we deal with the rate of convergence of the suggested method. Few 

examples of mathematical models for which the new algorithm can be implemented are 

given in Section 5. The numerical solution of a system of linear equations As = b where 

A is a general nonsymmetric matrix can be regarded as a particular case of our problem 

where the function which has to be approximated is f (z)  = l / z .  Section 6 is devoted to  this 

subject. Using tools from the theory of approximation in the complex plane for inverting 

nonsymmetric matrices has been studied already by other researchers. A few of them 

are: T. Manteuffel [Mant77], [Mant78], D. Smolarski and P. Saylor [SmSa85], Gutknecht 

[Gutk86], Y. Saad [Saad87],and others. The algorithm discussed in our paper gains its 

simplicity from the fact that it is based on the powerful tool of interpolation. Thus, it can 

be implemented in a straightforward way, once the conformal mapping function is known. 

An important conclusion of the analysis is that for the general nonsymmetric case, the 

significant factor which governs the rate of convergence of most of the iterative algorithms 

is not the well known condition number IlAll - llA-lll. It is shown that the relevant factor 

is p / R  where p is a parameter which measures the size of the domain and R is related to 

the orientation of the domain with regard to the singular point of the function $ ( Z  = 0). 
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Based on this conclusion it is shown that some iterative algorithms, like standard SOR, 
are based on an incomplete optimization process. We conclude this paper in Section 7 by 

giving some numerical examples. 
I 

2. Polynomial Approximation in the Complex Plane 

Let D be a bounded closed continuum in C such that the complement of D is simply 

connected in the extended plane and contains the point a t  00. Define now 

A ( D )  - the space of functions which are analytic at  every point of D .  

rm - space of complex polynomials of degree I m. 

Then it is well known [SmLe68] that for every f E A ( D )  there exists PA E rm such 

that 

IIf - P;IIc€l I Ilf - ~ m I l 0 0  VPTn E r m  (2.1) 

From algorithmic point of view, it is relatively complicated to  find PA. In many cases, it 

is quite simple to  find a polynomial approximation which is “almost” as good as 2‘:. It is 

found by projecting A ( D )  on T,. If S, is a projection operator 

(2.2) S,: A(D)  + T, , 

then 

f - Srn(f) = f - P; + S,(PA - f); 

thus 

If IISmll is reasonably small, regarding S m ( f )  as “almost” as good as P$ is justified. For 

example, if D is the unit disc and 

then [GeMa75] 
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If D = [-1,1] and 
m 

k=O 

while 

Tk(Z) = cos(k(cos-' 2)) (Chebyshev polynomials) , (2.8) 

then the bound on IISmll is exactly the same as in the previous case (2.6). A generalization 

to an arbitrary domain D (as defined in the beginning of this section) is given by a Faber 

polymomials expansion. Let 4(z )  be a conformal mapping from z to w which maps the 

complement of D to the complement of a disc of radius p such that 

p is the logarithmic capacity or the transfinite diameter of D [SmLe68]. 

If the Laurent expansion at  00 of [4(z)]" is 

[4(z)]" = zm + cm-lzm--l + * - c1z + co + c-12-1 + * .- , (2.10) 

then Faber polynomial of degree m, Fm(z), which corresponds to the domain D is the 

polynomial part of (2.10): 

We have 

(2.12) 

while R is chosen sufficiently large so that D is contained in the interior of the region 

bounded by the circle IzI = R [SmLe68). Given f E A(D)  then 

k=O 

The coefficients a k  are 

(2.13) 
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where $(w)  is the inverse of &(z)  and r > p is sufficiently small that f can be extended 

analytically to I,.. (1, is the closed Jordan region with boundary rr where I?,. is the image 

under $ of the circle IwI = r . )  In [Ella831 it was shown how the C j ’ S  and ak’s can be 

computed efficiently using F.F.T. Based on (2.13), the matrix f ( A )  can be approximated 

by Pm ( A )  where 
m 

Pm(A) = x a k F k ( A )  - (2.14) 

When D is an ellipse with axes parallel to the real and imaginary axes,then Fk is the 

translated and scaled Chebyshev polynomial Tk [Mark77]; thus it satisfies a simple three 

k=O 

term recurrecnce relation. This recurrence relation enables us to compute 

(2.15) 

efficiently. A detailed description of these cases, approximating the operator e A ,  can 

be found in [Tale85], [Tale86], [KoTa86], [TaKo84]. For more complicated domains, Fk 

satisfies a k terms recurrence relation [Ella83]; thus from memory point of view it is 

impractical to use an algorithm based on (2.15). 

This major drawback can be overcome by using a different approach to the approxi- 

mating problem. It uses interpolation as the projection operator Sm.  Using this tactic we 

are confronted with the following question: Which are the interpolating points in D ,  such 

that the interpolating polynomial will be “almost” as good as PA? It is known [SmLe68] 

that if D is the unit disc, then two possible sets of points are: 

(a) zj = O 

(b) The m roots of unity. 

j = 1,. . . , m (zeroes of zm) 

In a similar way, for a general domain D, a two possible sets of points are [SmLe68]: 

(a) the m zeroes of Fm ( z )  

(b) zj = t,b(wj)j = 1,. . . , m, while w j  are the m roots 

(2.14a) 

(2.14b) 

of the equation urn = p. 

in  the first case, it can be shown Iheiviaraj mat 
r -  x r  m-1 , I  

4 
IISmlI L -p log(m) + 1 + o(1) (2.15) 
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while in the second case 
2 

IlSrnII L -log(m) + 1 + o(1) - (2.16) 

Since, interpolating at Zj = + ( w j )  j = 0,. . . , m  does not involve computing Faber poly- 

7r 

nomials, it is the simplest and most efficient approach to this problem of approximation. 4 

The interpolating polynomial in Newton form is: 

where Uk is the divided difference of order k 

Uk = f[Zo,. . . , zk] k = 0,. . . ,772 . (2.18) 

When p ( the logorithmic capacity of D) is large, ai will be very small; thus it is preferable 

to make the following change of variables 

2 = z / p  . (2.19) 

and 

Pm(2) f(2) 

(2.20) 

(2.21) 

where 

Pm(2) = bo + bl(2 - 2,) + - * - + bm(2 - 2,) * 0 (2 - 2m-l) (2.224 

b k  = f [zo , .  . . , 2k] k = 0,. . . , m . (2.223) 

The only difficulty in finding Prn(2) is to get the function t,!~(w). For simple domains, 

it is possible to find this function analytically. For more complicated domains one has to 

1 

I resort to  a numerical approach. 

When the domain D is a polygon, the mapping function is Schwartz-Cristoffel trans- 

formation. In [Tref80], a very reliable and efficient algorithm for mapping the interior of 

the unit disc to the interior of the polygon is described. Since, in our case, the mapping 

of the exteriors is needed, the routines should be modified accordingly. 

I 
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Separated domains: In some very important physical phenomenon, we have a situation 

where the eignevalues of the matrix A are clustered in two or more separated domains which 

can be far apart (for example: stiff O.D.E.’s problems of parazitic waves in meteorological 

sciences, spectral methods for nonperiodic boundary values problems, etc.) . Hence, the 

domain D is a union of k subdomains: 

k D = Ui=,Di . 

In this case, the complement of D is not simply connected any more but just connected. 

The basic theory regarding the simply connected case extends to the more general one. A 

detailed analysis of this problem is carried out in our next paper. It is shown there that 

the interpolating points can be taken as a union of sets of points achieved by considering 

each domain separately. In Section 7, we bring some numerical examples of this case. 

3. The Algorithms 

Based on (2.22), we will approximate the operator f(A) by P,(a)  while 

P,(A) =boI + b , (A  - 201)  + b z ( A  - & I ) ( A  - &I)+ 

- - - + b, (& - 201)  - * * (A: - 2,- 1 I )  . 
A = ( l / p )  A 

Operating with P,(A:) on a vector v is carried out by the following algorithm 

Algorithm 1: 
u = v  

F o r i = l ,  ..., m do 

u = (A - &-1I)U 

w = 20 + b;u 

The output of Algorithm 1 is the vector w which satisfies 

w = P,(A)v . 

Roundoff errors of Algorithm 1 depend strongly on the arr 

points. 

(3.3) 

ement of the interpolating 
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In Appendix A we describe how to arrange the points, taking into account this phe- 

nomenon of roundoff errors. 

In many practical problems, we have the following situation: 

1) A is a real matrix 
- 

2) f(z) = f ( 4  
(3.4a) 

(3.4b) 

In this case, i t  is possible to design an algorithm similar to (3.2) which will be carried 

out in real arithmetic even so f i  and bi are complex numbers. This result is based on the 

following two theorems: 

Theorem 1: Let zo, 2 1 ,  z2 ,  Z 2 , .  . . , Z k ,  z k  be 2k interpolating points where zo and z1 are 

real numbers. If P 2 k - l ( z ) ,  

is the interpolating polynomial of a function f ( z )  which satisfies (3.4b)  then 

ao ,a l , . .  . , a 2 k - 1  are real numbers. 

Proof. The Lagrange formula of &-1(z) is 

k k 

P 2 k - l ( Z )  = l j ( z ) f ( z j )  l ; ( Z ) f ( Z j )  
j=O j = 2  

where 

k k 

i=O i = 2  

Since (3.9) we have 

(3.10) 
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k k 

Hence 

k k k k 

i=O i = 2  i = 2  i = O  

Therefore, 

Using (3.4b) and (3.14) in (3.6) we get 

k k 

(3.11) 

(3.12) 

(3.13) 

(3 .14~)  

(3.14 b) 

(3.15) 
j = 2  j = O  

and the proof is concluded. 

Theoretically, it is possible to write an algorithm based on (3.5). It means to approx- 

imate f (A) by P,(A) where 

This algorithm cannot be used for practical problem since huge roundoff errors result. We 

would like to stick to the Newton-form which is much more robust from the roundoff errors 

point of view. For this purpose, we state and prove the following theorem: 

Theorem 2: Let P 2 k - l ( z )  be the interpolating polynomial as defined in  Theorem 1, written 

in Newton-form 
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& ( Z )  = b2i + b 2 i + 1 ( ~  - ~ i + i )  

a 
& ( z )  = I-J ( Z  - Z j )  ( Z  - Zj) i = 2 , .  . . , k - 1 

j = 2  

R l ( Z )  = 1 . 

then 

where 
SR(Z) = b$ + bfi+,(Z - Z;+1) R 

b$+l = Real (b2 i+1)  = h i + 1  

Proof. We have 

Define 

7r - The set of all polynomials with real coefficients. 

Then, by theorem 1 

P 2 k + l ( Z ) ,  P 2 k - 1 1 2 )  E * 

Thus 

G k + ,  = b 2 k + l  

( 3 .18~)  

(3.18b) 

(3.18~)  

(3.19) 

( 3 . 2 0 ~ )  

(3.206) 

(3 .20~)  

(3.20d) 

(3.21) 

(3.22) 

(3.23) 
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R R R  
32k - 32k+lZk+l = b2k  - 3 2 k + l Z k + l  

and the proof is concluded. 

Based on (3.19), the vector w 

is computed by the following algorithm: 

Algorithm 2. 

w = [bo1 + 6l(a - zo1)]o 

(3.24) 

(3.25) 

(3 .26~)  

(3.263) 

For i = 1, , . . . , k - 1 do: 

i: = (A - . iG1l)r (3 .26~)  

w = w + b2;r R + b2i+lr R -  (3.26d) 

r = (a - .i&I)? + (2:+l)2r = Im(.ii+l)). (3.26e) 

This algorithm requires three vectors. It is possible to save one vector by using an 

algorithm based on (3.16). As mentioned previously, this algorithm has the disadvantage 

of sensitivity to roundoff errors. Thus,it can be used only with low degree polynomials. 

Another possible way of saving one vector and which is much more robust from the roundoff 

errors point of view is to apply (3.19) through calculating the roots of &-1(z). Since 

P 2 k - 1 ( ~ )  is a polynomial with real coefficients, we have the following set of roots 

where 

r + 2s = 2k - 1; X i  are real . 

P2k-110) . 
C Y =  

(3.28) 

(3.29) 

(3.30) 
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Operating with (3.29) requires only two vectors. This approach is limited mainly by the 

sensitivity of the algorithm which finds the roots of P 2 k - - 3 ( ~ ) .  

4. Rate of Convergence. 

We have the following definitions: 

Definition (4.1): Let I'R be the image under $J of the circle IwI = R(R > p)  and IR is 

the closed Jordan region whose boundary is I'R. If f(z) is single valued and analytic on 

IR, then the sequence of polynomials Pm(z)  is said to converge to f(z) on IR maximally if 

where C depends on p / R  but not on m or z. 

Definition (4.2): The set of interpolating points z j  = $ J ( w j )  is said to be uniformly 

distributed on I'D (the boundary of D) if w j  are equally distributed on the circle IwI = p. 

Using these two definitions, we can quote the following [Wals56]: 

Theorem: Let D be a closed Jordan region. Let the points pi"' lie on the boundary 

r D  of D. A necessary and sufficient condition that the sequence of polynomials Pm(z) 

of degree m found by interpolation to a function f(z)  analytic on D in the points pi"' 
converges uniformly to  f(z) on D is that the points pi"' be uniformly distributed on I'D. 

If this condition is satisfied, the sequence Pm(z)  converges maximally to f(z) on D. 

Given a domain D and a function f(z),  p and R are defined explicitly and we have 

p / R  = the asymptotic rate of convergence. 

If f (z)  is an entire function, (4.1) is satisfied for arbitrary R. Using Theorem (l), 

we can expect that the algorithm described in Section 3 will converge very rapidly for 

the approximation of the operator exp(A). On the other end, for the operator A-l, the 

rate of convergence will depend strongly on the size of D (the parameter p) and on its 

orientation with regard to the singular point z = 0 (the parameter R = I4(O)l).  Since the 

set of interpolating points z j  - - $J ( p e i j %  ) j = 0,. . . , m - 1 depend on m, given a 
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desired accuracy e, one has to decide a priory on the degree of the polynomial. Deciding 

on m can be done in the following ways: 

1. Getting the parameters p and R (analytically or numerically) and choosing m such 

that 

( p p q m  5z E .  ( 4 4  

2. Computing the error numerically on a set of check points on the boundary for different 

m’s, and choosing m which will satisfy the desired accuracy. 

Using 1 or 2 gives us information on If(.) - Pm(z)Ioo. Substituting it for llf(A) - 

Pm(A)llm is relatively accurate when A is a normal matrix, since in this case we have 

where T and T-’ are the unitary matrices which diagnolize A. When A is “far” from 

normality, m should be increased by an amount which depends on llTll - ~ ~ T - l ~ ~ .  

5. Applications. 

Frequently, while solving a system of O.D.E.’s or P.D.E.’s, we end up with the following 

set of differential equations 

where UN and SN are vectors of dimension N and G N  is a N x N matrix. Expanding 

S N ( G  t )  as 
k 

sN(z,t)  = aj(t)S&(Z) 
j =  1 

enables us to write the formal solution of (5.1) as 
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where 
t 

f j ( G ~ t )  = exp(GNT)aj(t - 7 ) d  .7 l s j s k  (5.3) 

U N ( ~ )  can be approximated by the algorithm discussed in Section 3 where the functions 

which have to  be interpolated are 

fj(z) = exp(n )a j ( t  - 7)dr  l s j s k  (5.4b) 

In the case where (5.1) is originated from a system of hyperbolic P.D.E.'s, the domain D 

is on the imaginary axis (in the constant coefficients case) or close to  it (in the variable 

coefficients case). When (5.1) is originated from a set of parabolic equations the domain 

D is on the negative real axis or close to it. In these two cases, the Faber polynomials are 

scaled and translated Chebyshev polynomials. Thus, an efficient algorithm, which makes 

use of the three terms recurrence relations, can be implemented. These two cases are 

described and treated in details in [Tale86], [KoTa86], [TaKo84], [Tale85]. 

In the more general situation, when we have both parabolic and hyperbolic terms in 

the equation, the domain D is more complicated. Let us look a t  the following simple 1 - D 

equation 

ut = au + bu, + cu,, ( a < O , c > O ) .  (5.5) 

If the solution is periodic in space, then a good approximation can be achieved by pseu- 

dospectral Fourier descretization. We get the following semidiscrete representation of (5.5) 

where 

is the projected solution. (5.6) can be written as 
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while GN is the finite domain operator 

G ~ = a l + b - + c - .  a a 2  

a x  a x 2  (5.9) 

The function eikz  is an eigenfunction of GN. Thus, if x k  is an eigenvalue of G N ,  then 

x k  = a - ck2 + ibk Ikl L N - (5.10) 

Since a < 0 and c > 0, we get that the domain D is the following parabola in the complex 

plane: 

D = { z = x + i y l x = a - c k ;  2 y = b k  l k l < N } .  (5.11) 

In real applications a, b, and c are not constant, but have space dependence. There- 

fore, the domain D will vary accordingly. In section 7 we report on some numerical 

experiments treating this problem. 

In a joint work with Dr. Dan Kosloff and his colleagues, we investigate the implemen- 

tation of the present algorithm to some real geophysical problems which can be represented 

as (5 .1) .  The eigenvalues are scattered close to a T shape domain D 

D = {z lz  E D1 U 0 2  ; D1 = [-a,O] ; D2 = [ - ib , ib] }  

In this case, we have an analytic expression for $J(w).  (Thanks to Nick Trefethen.) The 

conformal mapping $ ( w )  which maps the complement of the unit disc on the complement 

of D is: 

Hence 

where 

1 + E)(w + -) + 1 - E 
W 

E =da2 + b 2 / b  

b(1 + E )  
4 P =  

is the logarithmic capacity of D.  Numerical results for this dom 

7. 

i 

IWI = 1 . 

ent 

(5.12) 

(5.13) 

(5.14) 

d in section 
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A very important area where our method can be implemented is the one of solving general 

nonsymmetric systems of equations. This is topic of the next section. 

6. Linear System. 

The iterative solution to a set of linear equations which can be written in matrix form 

Ax = b (6.1) 

is a well treated problem in the numerical analysis literature. While very efficient algo- 

rithms have been developed for the case when A is a symmetric positive definite matrix, 

the general nonsymmetric case is still a challenging problem. 

In this section, we would describe an iterative algorithm for the solution of (6.1) based 

on the new approach. Since 

x = A-’b (6.2) 

we can write the numerical approximation X k  as 

where p k ( Z )  is “almost best” approximation to the function i. z belongs to the domain 

D which includes all the eigenvalues of A.  

In [Mant77], (Mant781, T.A. Manteuffel has described an iterative algorithm based on 

enclosing the eigenvalues in ellipses in the complex plane, thus getting an approximation 

based on scaled and translated Chebyshev polynomials expansion. The algorithm described 

in our paper is more general since it can be implemented to any domain in the complex 

plane. Its advantage will be significant when the discrepancy between the best ellipse as 

defined in [Mant77] and the domain is relatively large. 

A standard approach for solving (6.1) is known as Richardson algorithm. It takes the 

following form: 

xk+l = ,k - &k(AXk - 1) . (6.4) 

If 
k k E = x - x  
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we get 

Ek = [PL(A)]Eo 

where 

and ai are optimal in the sense that 

max IPi ( z )  I 5 max 
Z E D  Z E D  

j = O  

( ~ k  is the space of all polynomials of degree k). We would like to  show that an algorithm 

which results from implementating our approach is equivalent to algorithm based on (6.4)- 

(6.8). For this purpose we have 

Theorem 3. Let Tk(z) be a polynomial of degree k defined on C such that Tk(0) = 1 and 

let Q k - l ( Z )  be the interpolant of the function 4 at the roots of T k  then. 

Proof. We have 

i =  1, ..., k 1 
Q k - l ( z i )  = - 

zi 

where z; is a root of Tk. Therefore, the polynomial &(z)  

vanishes at k + 1 points: O , z 1 , .  . . , Z k  and thus it is identical zero. Hence, 

and the proof is concluded. 

If zo is the initial guess, we have 

AX' = bo 

A(z - X') = b - bo 

(6.9) 

(6.10) 

(6.11) 

(6.12) 

(6.13) 

(6.14) 
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Thus 

x = A-'(b - bo) + zo . 

Approximating A-' by the interpolant Qk-l(A) results in 

x k  = Qk-l(A)(b - bo) 4- X o  

using (6.5) and (6.14) we get 

(6.15) 

(6.16) 

I Ek = [I - AQk-1 (A) ]Eo  . (6.17) 

Since (6.9), the equivalence is established. 

We have shown that using the algorithm based on interpolating the function $ at 

21,. . . , Zk will reproduce identical results to Richardson iterations 

xj+' = - ai (Axj  - b) (6.18) 

with 

j = o ,  ..., IC-1 . (6.19) 

Writing (6.18), (6.19) as an algorithm with real arithmetic takes the following form: 

Algorithm 3 (Richardson). 

(The parameters are ai = l . /zj  and zj are defined in Appendix A.) 

x 1  = zo - ao(Axo - b)  

x 2  = x 1  - al(Ax' - b)  

Preconditioning. 

Usually, solving a linear system of equations (6.1) is composed of two stages: 

(6.20~) 

(6.20b) 

(6.21~) 

(6.2 1 b)  
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1. Modifying the original system to an equivalent one 

., ,-, 

Ax = b (6.22) 

such that (6.22) will converge faster than (6.1). 

2. Solving (6.22). 

In many cases, we have a family of matrices 2 which depend on a parameter w such 

that - .., 
A,x = b, (6.23) 

and we would like to choose the optimal w. Based on Section 4, it is obvious that the 

significant factor which determines the convergence is 

X = p / R .  (6.24) 

Optimization is achieved when 

vw . (6.25) 

Therefore, we conclude that for matrices whose eigenvalues are scattered in the complex 

plane, one should consider the factor p / R  rather than the standard condition number 

cond(A) = llAll llA-lll. It is possible to have two matrices A and B such that 

cond (A) < cond (B)  (6.26) 

and on the other hand 

Ip/Rl(A) > b/RI(B) (6.27) 

For example: Let A be a normal matrice whose spectrum r ( A )  is 

r(A) = {zl 15 Izl 5 2; Re z > 0 )  . 

Let B be a normai matrice whose spectrum is 

r (B)  = {zl Iz - 31 5 2) . 
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(6.28) 

We have 
cond(A) = 2 

cond(B) = 5 . 

[p/R](A) = 0.8547 

[p /R]  ( B )  = 0.6666 - - 

On the other hand 

(6.29) 

Since (6.29), Richardson algorithm for B will converge much faster than for A, even so 

cond(B) > cond(A). Based on this discussion, we would like to show also that the standard 

. 

S.O.R. procedure can be considered as an incomplete optimization process. Solving (6.1) 

by S.O.R., we use the following iterative procedure 

where 
T, = MG N ,  

b ,  = ML'b 

M, = D + w L  

N ,  = (1 - w )  D - WU . 
U, D,  L are the lower, diagonal, and upper parts of the matrice A respectively. The 

optimal w,,, is chosen such that 

lr(Twaor)1 = minimal . (6.32) 

(r(A) is the spectral radius). 

If z is a solution of (6.30), then 

A,x = b, 

where 

A , = I - T , .  

(6.33) 

(6.34) 

Thus, it is evident that rather than using an optimization procedure based on (6.32) 

one should use the more general one, based on (6.25). A well-known example treated in 

the literature for demonstrating the features of S.O.R. is the problem of solving Laplace 
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equation in a rectangle. In [Youn'll, p. 2051, it is shown that for a certain discretization 

of the rectangle, the optimal w is 

wSor = 1.25 . 
In this case, all the eigenvalues A; of T ,  satisfy 

= 0.25 . 

Hence, the rate of convergence is 0.25. Optimizing with respect to (6.25) can result with 

a different solution. We do not intend to  carry out this optimization process, but to  point 

out a different possible parameter w. For this problem, we can choose C 

0 < e < 0.25 - w=l+E: 

such that the domain D which includes all the eigenvalues of A; will be 

where 

and 

0 < A0 < 1 - E : .  

Since the complement of D is not a simply connected domain, it is not included in the 

theory discussed in this paper. Implementing our approach to these types of domains will 

be carried out in a future paper. For the time being, let us mention that the basic results 

extend. Thus, since B1 is composed of only one point and B2 is a circle of radius e around 

1, it can be shown that the rate of convergence p / R  is 

p / f i (Ac)  = E: < 0.25 

and A0 will enter into the constant C (4.1). The set of interpolating points is the union of 

sets of both domains. Since in B1 we have only one point, we will get the following points 
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while pj  can be chosen as equally distributed on the circle ) z  - 11 = E 

pi = E exp(27rijln) j = 1, ..., n 

or as the n zeros of Faber polynomial of degree m which is ( z  - l)n; thus I 
pj = 1 j =  1, ..., n .  

The efficiency of using an algorithm based on D rather then w,,, depends on the accuracy 

needed, since the constant C has been increased by a factor of 11x0. 

7. Numerical Results. 

I. Time dependent problem-Parabolic type. 

In this subsection we present numerical results for the following problem 

U t  - GU = S ( X , ~ )  

u(x,o) = 0 . 

a2 a 
a22 d X  

Where 

(7.lb) 

( 7 . 1 ~ )  

G = U(X) - + b ( s )  - + C ( X )  

~ ( x , t )  = sin(kx) - t { [ - k 2 a ( x )  + c(s)]  sinks + kb(x) coskx} . 
The exact solution of (7.1) is 

u(x,t) = t sinkx . ( 7 4  

In order to solve (7.1) numerically, we first approximate the space operator G, by the finite 

difference operator GN. Assuming periodicity we have 

+ b(xj) - ui-l + c(xj)uj j = 0,. . - , N  - 1 U j + 1  - 2uj + uj-1 
Ax2 2Ax (GNU) j = a(sj) 

(7.3) 

where N is the number of grid points and 

Ax = 2r/N 

( 7 . 1 ~ )  

(7.4) 



x j  = j -  AX j = O ,  ..., N .  (7.5) 

Hence GN is a N x N matrix. The semidescrete representation of (7.1) is 

( U N ) t  - GNUN = s i  + ts$ (7 .6~)  

(u;) j = o j =  0, ..., N (7.6b) 

(s;)j = sin (kxj) j =  0, ..., N (7.64 

(S$)j = [k2a(xj) - c ( x ~ ) ]  sin kxj  - kb(xj) CosICxj j = 0,. . . , N .  (7.6d) 

The formal solution of (7.6) is 

where 
r t  

f i ( G ~ t )  = exp(GN7)dT = [exp(GNt) - I ] / G N  (7 .8~)  

t 

f 2 ( G ~ t )  = eXp(GNT)(t - ~ ) d 7  = [exp(GNt) - G N ~  - I ] /G$.  (7.8b) 

In order to  implement our algorithm we have to get an approximation of the domain D 

which includes the eigenvalues of GN. One way to get it is by doing a Fourier analysis of 

the constant coefficients operator. 

where 

(7.94 

a =  max la(x)l; b =  max Ib(z)(; c = max Ic(x)I; or c =  O < z 5 2 r  min Ic(x)l . 
0<252* 0<2527r O<z52r  

(7.9b) 

Let Wk be an eigenvector of 6 ~ ;  then 

( v k ) j  = e i k j A z  (7.10) 

and 
2a b 

Ax2 Ax x k  = -(cos(kAx) - 1) - i-sin(kAx) - c (7.11) 
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Hence, in order to implement the new algorithm we have to interpolate the functions 

fl(P2t) = [exp(pZt) - 1]/P2 

f2(pzt) = [exp(pzt) - pzt -  pi)^ 

at points on L i j .  

translated Chebychev polynomial of degree M [Riv174]. Thus 

P 

In this case we can take the M interpolating points as the extreme of the scaled and 

I 

- 
is an eigenvalue of GN. 

The tables in this subsection present numerical results for the fully descrete solution 

of (7.1) where 

k = 3  

a(x) = 1./(2 + cosx) 

b(x)  = 1./(2 + sin(x)) 

c(x) = -20./(2 + cosx). 

(7.12) 

(7.13) 

(7.14) 

From (7.11) we get 

(7.15) 

(7.16) 

while 

Since 

IB - AI >> C 

taking fi as 

5 = {xlA 5 x 5 B} 

(7.18) 

(7.19) 

will be a relatively good approximation to the domain D. We have 

p ( f i )  = ( B  - A ) / 4  . (7.20) 

- 1  
Z j  = -[(B - A)Zj + B + A] 

2 
j = 1, ..., M 
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r 7 

N M L2 I n  

32 24 .1108-01 

64 52 .2592-02 

128 112 .7033-03 
L 

where 

In order to avoid roundoff errors one should arrange the interpolating points as described 

in Appendix A. Hence 

1 
2 

zj = - [ (B  - A)zj  + B -t A] j = 1, ..., M (7.21) 

where z1=1 ; z2=-1  (7.22a) 

Xj = Re(w2j--3) j = 3 , .  . . , M (7.22b) 

and ~ 2 j - 3  are as in Figure (A.l) for the case M = 7. 

Since zj are real we can use algorithm 1 (3.2). The next two tables present the 

numerical results using algorithm 1 with zj defined by (7.21)-(7.22). 

Table 1. 

Mesh refinement chart - problem (7.1) 

Using algorithm 1. t = 1 

N - Number of grid points. 

M - Number of matrix-vector multiplications (Each evolution operator is approximated 

by a polynomial of degree M/2) 

L2In - L2 Error at t = 1. 

For sake of comparison we present in Table 2 a similar chart while using a standard 

second order in time scheme 

At2 
2 

Un+' = un + AtGNUn + - - G N U  ( t  = n - A t ) .  (7.23) 
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c 

- N M 452 Ta 
32 102 .1108-01 

64 408 .272402 

128 1632 .6828-03 
c - 

Table 2. 

Mesh refinement chart - problem (7.1) 

Using (7.23) t = 1 

N 

32 

64 

128 

7 

M L2 I n  

24 .1322-01 

52 .3407-02 

112 .1180-02 
t 

(In this case M/2 is the number of time steps.) 

Comparing Tables 1 and 2 we observe that while in the standard second order scheme 

(7.23) M is proportional to N 2  (which results from the fact that At = O(Az2)) for the new 

algorithm, M is “almost” proportional to N .  This phenomenon is explained and proved 

in [Tale 851. For t = 20 we have the following results; 

Table 3. 

Mesh refinement chart - problem (7.1) 

Using algorithm 1 t = 20 

Observing Tables 1 and 3 we notice that M does not depend on t .  It can be explained 

as follows: For large t ,  / I  exp(GNt)II is much smaller than the error which results from the 

space descretization. Thus, since (7.8) we have 

f l ( G N t )  E -1/GN 

f 2 ( G ~ t )  - ( G N ~  + I)/G$ 

which means that for large t ,  approximating f l ( G N t )  is equivalent to inverting GN,and 

approximating f ( G N t )  is equivalent to inverting G c .  



We did not implement the second order algorithm (7.27) for t = 20, but it is straightforward 

(by stability considerations) that for N = 32,64,128 we have M = 2040,8160,32640 

respectively. Hence for t = 20 and N = 128 the new algorithm is more efficient than the 

second order scheme by the impressive factor of 32640/112 E 290. 

11. Viscoelastic Wave Prop ogat ion. 

We have worked on this model with the Geophysical group in Tel- Aviv University 

headed by Dr. Dan Kosloff. A detailed report on the results for a general 2-D problems 

will be published elsewhere. In this subsection we describe the implementation of the 

algorithm for the simple 1-D model 

Ut = GU O < X < L  

where 

G =  muV 0 V ; u =  u2 

a 0 -1/T 113 

c = 2000 (the speed of sound) 

CI: = c2(1 -  T / r ] ) / r ]  

(7.24) 

(7.25) 

(7 .26~)  

(7.26b) 

(7 .26~)  

(7.26d) 

u1 is the pressure,u2 is the pressure time derivative,us is a memory variable and T ,  r ]  are 

parameters of the problem. The initial data are 

( 7 . 2 7 ~ )  

(7.273) 



28 

The space descretization is done by Fourier method (GoOr81). Thus the semidescrete 

representation is 

( U N ) ~  = GNUN 

Uk(x,O) = PN[exp(--(x- 1 -L) 1 2  ] . 
2 2 

U$(X,O) = U$(X,O) = 0 . 
P N  is the pseudospectral projection operator: 

x j  = jAx  

j = O,.. . ,2N - 1 

Ax = L/2N 

and 

G N  = PNGPN . 

(GN is a 6N x 6 N  matrix.) 

In our experiments we took 

N = 6 4 .  

A x = 2 0 .  

Thus 

L = 2N x Ax = 2560. 

(7.28~) 

(7.283) 

(7.29) 

(7.30) 

(7.31) 

(7.32) 

(7.33) 

(7.34) 

(7.35) 

Since N = 64, GN is a 384 x 384 matrix. 

Approximating the domain D,which includes the eigenvalues of G ~ , i s  done by making 

use of the following idea. Let us assume that the number of points K which are needed to 

resolve the coefficients of the operator G are relatively small. In this case, decreasing the 

space domain by a factor of KIN and using the same Ax gives us the matrix GK. Since 
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N 

128 

128 

K is small, one can use a library routine to compute the eigenvalues of GK. The domain 

DK,which includes this set of eigenvalues,is relatively a good approximation of D. In the 

present case GN is a constant coefficient matrix,and the domain 0 4  achieved by computing 

the eigenvalues of G4 (a 12 x 12 matrix) is exactly the same as 0 1 2 8 .  The domain 0 4  is 

M L2 In 

130 .1588-02 

150 .2904-05 

0 4  = {zlz E [-a,O] or z E [ - i b , i b ] }  (7.36) 

where a and b depend on ~ , r ] .  For this domain we have an analytic expression of the 

conformal mapping which maps the complement of the unit disc on the complement of 0 4  

(5.12). The logarithmic capacity is given by (5.14). 

We ran two sets of numerical experiments. In the first one we took 

T = 0.1600890 x 

r] = 0.1582262 x 

and we have gotten 

a = 6320 9 b = 317 ,  

Using algorithm 2 (3.26) for computing the solution a t  time level t = 0.1 results in 

(Since we do not have an analytic expression for the exact solution, we computed 

LsI, by comparing the numerical solution to another numerical solution achieved by using 

algorithm 2 with M = 300.) Similarly, using the second order in time algorithm (7.23) 

results in 

(For M < 632 the scheme is unstable.) 
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In the next experiment we took 

T = 0.1600890 x loT4 

7 = 0.1582262 X lo-* 

and we have gotten 

a = 63201 9 b = 317 . 

The results at t = .1 were 

N M L2 I n  

128 400 .2200-02 

128 450 .1096-04 
i r 

While using (7.23) results in 

r N M I L2Ta I 
I I I 128 6320 .1892-3 

(For M < 6320 the scheme is unstable.) 

III. Linear Systems. 

For the numerical experiments reported in this subsection, we have used a test matrix 

A,,,  which is block diagonal. Each block is of the following shape 

(7.37) 

Hence, the eigenvalues are 

Xj = a j  f ilbjcjl j =  1, ..., N f 2 .  (7.38) 
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Two kinds of experiments have been carried out: 

bi = c j  + the matrix is normal. 

bi # c i  + the matrix is not normal. 

We solve 

Av = w ( A  is a 1000 x 1000 matrix) 

where 
v = [ V l ,  . . . , V l O O O ]  T 

and 

v i  = (-1)' j = 1 , .  . . ,1000 

and the initial guess vo is such that 

v? = 0 j = 1, .  . . ,1000 . 3 

Three methods have been tested: 

(1) I,, - the method described in this paper 

(2) cb - Chebyshev approach (Mant78) 

(3) M,. - Minimum residual. 

The minimum residual algorithm is defined as follows: 

Given initial guess xo for k = 0,1,. . . , until satisfied do 

rk  = Axk - b 

crk = ( r k ,  Ark) / (Ark ,  Ark)  

k Zk+' = Z k  - &kr 

(7.39) 

(7.40) 

(7.41) 
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1. First case - Cross shaped domain. 

In [SmSa85], the authors treat an example given by Hageman [Hay0811 which orig- 

inates from the solution of the neutron diffusion equation, where the eigenvalues of the 

Jacobi iteration matrix may be shown to lie on a the following Cross-shaped domain D: 

The conformal mapping from the exterior of the unit disc to the exterior of D is 

- 1 
z = $ ( w )  = 6 + - (7.42) 

Since (7.42) we get that 

p = 1/&. (7.43) 

Thus the mapping function from the exterior of disc of radius p to  the exterior of D is 

z = $ ( w )  = b + \iw2 + 1 - (7.44) 

we have 
R =  [ b2 + (b4 - 1)1 /2]  'j2 

2 

Using (7.43) and (7.46) we get that the asymptotic rate of convergence is 

-1/2 
P / R  = [b' + (b4 - 1)'/2] . 

According to the theory (4.1) 

(7.45) 

(7.46) 

(7.47) 

(7.48) 
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L2Error (Cb) 
Normal N. Normal 

1.85-1 9.32+0 

1.04-1 10.31+0 

3.9-2 7.65+0 

thus we can predict that after M iterations, the accuracy (in the normal case) will be 

L2Error (M,) I 
Norma 

9.67-2 

5.37-2 

1.9-2 

L2Err0r(In) ( P / R ) ~  . (7.49) 

Normal N. Normal 

102 1.575-3 3.16-3 3.87-3 1.02+0 

201 2.8-6 5.63-6 6.9-6 4.41-3 

402 9.0-12 1.8-11 2.2-11 2.29-8 
I' 

An improved prediction, which includes the constant C is: 

M L2Error(In) C ( p / R ) g  n ( 1  - -) z 

zi i=l 

where z is any point at the domain D and zi are the interpolating points. 

(In the next two tables we have chosen z = (b ,  0) .) 

The numerical results are 

Table 7 .  

Solution of (7.99) with b = 1.004 

(7.50) 

6.55+0 

I 7.34+0 

7.13+0 1 
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4 

Table 8. 

M ( P / R y  C ( P / R ) Z  L2Error (In) &Error (Cb) &Error (M,) 

Normal N. Normal Normal N. Normal Normal N. Normal 
----_--I-.--- -- . -----.I_--____- 

10 4.13-2 8.99-2 1.10-1 9.69-1 1.9-1 9.9-1 1.57-1 8.0-1 

22 9.03-4 1.8-3 2.22-3 6.37-2 5.01-2 5.56-1 4.07-2 4.29-1 

42 1.5-6 3.1-6 3.8-6 2.82-4 6.34-3 1.33-1 5.1-3 9.98-2 

Solution of (7.99) with b = 1.1 

82 4.5-12 9.0-12 1.1-11 I 2.15-9 I 1.2-4 4.81-3 9.4-5 3.27-3 I 

2. Second Case - Boomerang shape  domain. 

Another example reported in [SmSa85] is Van der Vorst's example. Let M be the 

matrix arising from the descretization of the P.D.E. operator u,, + uyy + PluZ + P ~ u ,  and 

let K be the incomplete Choleshey factorization; then the eigenvalues of the preconditioned 

matrix K - l M ,  are sometimes observed to form the following boomerang-shaped profile 

_ _  * 
(7,O) Re z 

(1,-4) ( 3 y - 4 )  

Since, in this case we do not have an explicit expression for the conformal mapping, 

we have used numerical algorithm [Tref88] for computing the interpolating points Zi. The 

predicted accuracy is 
M 

C ( P / R ) E  E - "1 (7.51) 
zi i= 1 
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M 

20 

40 

60 

while 

z = (6,O) . 

Table 9 summerizes the results of this case. 

C(pmg L2Error (In) 
Normal N. Normal 

1.23-4 5.4-4 8.8-4 

7.58-8 2.367 5.14-7 

3.78-11 1.03-10 3.05-10 

Table 9. 

1.18-1 

4.3-2 

1.71-2 

1.33-1 2.42-1 

5.8-2 1.13-1 

4.24-2 5.59-2 

(7.52) 

. .  I 

Normal N. Normal Normal 

--- -~ -. 
In the next experiment we have shifted the  domain to the left. 

N. Normal I 
2.35+0 

2.35+0 

2.35f0 

According to  the theory, the two methods: Cb and Mr would not converge in this case. 

Table 10 verified this fact. 
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Table 10. 

' 

M C(PIR)E L2Error ( I n )  L2Error (Cb) L2Error (M,) 
t 

Normal N. Normal Normal N. Normal Normal N. Normal 

20 1.56-3 6.65-3 1.08-2 1.15+0 1.31+0 7.09-1 3.62+0 

40 1.22-5 3.8-5 8.25-5 4.93+0 6.67+0 6.76-1 3.62+0 

60 7.91-8 2.167 6.38-7 23.0+0 56.9+0 6.58-1 3.62+0 

3. Third Case - disjoint intervals. 

As mentioned previously (Section 2), since the complement of D is not simply con- 

nected anymore one should use a slightly different theory. In a future paper we will carry 

out a detailed analysis. 

In this subsection we report on a few experiments where D is 

The interpolating points are 

where 

I 7r(i - 1) 
(a2 - a1) cos + a 2  + a1 

( N 1 -  1) 

1 r(i - 1) 
2' = 1 [(a4 - 03) cos + a3 + a4 

2 (N2 - 1) 

i = 1, ..., N1 

i =  I, ..., N2 

(7.53) 

(7.54) 

(7.55) 

(7.56) 

(7.57) 

(7.58) 
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The error polynomial PN(z )  is 

while 

(7.60) 

(7.61) 

We have 

Since the conformal mapping from the exterior of a unit disc to the exterior of an interval 

[a, b] is 

+ - l ( w )  = - 1 1  [ - (a- . ) ( tu+-)+b+o]  1 , 2 2  20 

we get 

p = ( b -  a ) / 4  

(7.63) 

R = ( a + b + 6 ) / 4 .  

Thus 

Therefore if 

($Z;5JN1=. 

J 

(7.64) 

(7.65) 

z E I 1 .  (7.66) 

(7.67) 

(7.68) 

(7.69) 
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Now, for z E 1 2  we have 

max ( z )  1 - kaqN1 

where 

Therefore, if 

kaqN1 ( ~ 2 / R 2 ) ~ '  < c 

then 

I P N ( Z ) I  < E 2 E I2 . 
Using (7.66), (7.68) ,and (7.73) ,we get that N2 has to  satisfy 

(7.70) 

(7.71) 

(7.72) 

(7.73) 

(7.74) 

(7.75) 

In Table (11 )  we report on experiments where a1, a 2  are fixed, and we increase a3, a4 

such that a4 - a3 is constant. According to (7.75), it is easily verified that in this case 

N2 --+ N1. The predicted error is 



a3 - 

20 

40 

80 

60 

320 

- 

Normal N. Normal 

28-3 1.0-2 

2.2-3 4.1-2 

5.4-2 1.3-1 

2.8-2 1.6-1 

1.2-1 1.6-1 

- 
N1 - 

12 

12 

12 

12 

12 - c 

- 
N2 - 

12 

12 

12 

12 

12 - 

1.1-7 

1.9-7 

2.5-7 

2.9-7 

3.2-7 

- 
Er - 

1.9-7 

3.2-7 

4.4-7 

5.1-7 

5.5-7 

1.7-5 6.6-5 

5.4-4 9.7-4 

1.4-4 75-3 

3.2-4 4.3-2 

6.9-4 7.4-2 
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Normal N. Normal 

1.3-7 1.3-5 

2.9-7 9.7-6 

6.0-7 9.8-6 

Table 11. 

a1 = 1  a2 = 3  a4=cy3+2 

Normal N. Normal Normal N. Normal 

7.7-7 3.65 3.8-4 2.5-4 

2.0-5 1.1-3 4.2-4 1.5-3 

3.6-4 2.2-2 4.9-3 1.3-2 

Normal N. Normal Normal I I N. Normal 

3.5-3 

8.7-2 

1.0+0 

5.9+0 

28.8+0 

L2 Error (M,) I 

In the next set of experiments,we also increase the distance between cy3 and cy4. The 

results are reported in Table 12. 

Table 12. 

cy1 = 1  a1 = 3  a4=3cy3 

32 

38 

44 

50 - 

1.67 

8.4-7 

2.2-6 

3.9-6 9.6-7 I 1.5-5 I 4.2-3 1 2.8-1 I 1.9-2 I 2.5-2 1 
In the last set of experiments, we have negatives eigenvalues as well. In this case, one 

cannot use the two methods: Cb, Mr. 
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.I 

Table 13. 

r 
a1 N1 N2 E,  L2 Error (In) 

r 

Normal N. Normal 

2 16 16 9.7-7 3.5-7 2.5-5 

4 16 16 9.7-7 3.5-7 2.5-5 

8 16 16 9.7-7 3.5-7 2.5-5 

8. Conclusions 

It has been shown that having an a priori knowledge on the distribution of the eigen- 

values of a matrix A ,  it is possible to construct an efficient algorithm for approximating 

f (A) .  The more accurate we locate the domain of the e.v., the more efficient is the al- 

gorithm. Two methods addressing this problem were described in Section 7 .  It seems 

to us that once this problem of finding the domain of the e.v. is solved satisfactorily, 

the algorithms described in the paper can be used as a numerical tool for many practical 

problems. 
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j =  1, ..., N 

Appendix A. 

The set of interpolating points satisfy 

z j  = I j ( W j )  

while w j  are roots of the equation 

w N = l .  ( A 4  

The problem is: how to arrange w j  such that the roundoff errors will be minimum. 

In a future paper we will carry out a detailed analysis addressing this problem. Ac- 

cording to the solution described there, we have 

w1, w2,. * 3 W N  

equally distributed on the unit circle, where 

w1 = 1 ; w2 = -1 

and each "new" point w j  is chosen such that the partial set 

W 1 , W 2 , .  , W j  

will be as equally distributed as possible. For example, when N = 12 we have 
W.. 

(A-3 )  
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while 

w1= 1 ; w2 = -1 

and each “new” pair of points is chosen such that the partial set 

will be as equally distributed as possible. Thus, for the case N = 12 we have 

Figure (A.2). 
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